

## Silicon Temperature Sensors

| KTY 10-x |
|----------|
| KTY 11-x |
| KTY 13-x |
| KTY 21-x |
| KTY 23-x |
| KTY 19-6 |
|          |

## **Features**

- Temperature dependent resistor with positive temperature coefficier
- Temperature range 50 °C to + 150 °C (– 60 F to 300 F)
- · Available in SMD or leaded or customized packages
- · Linear output
- · Excellent longterm stability
- · Polarity independent due to symmetrical construction
- · Fast response time
- Resistance tolerances ( $R_{25}$ ) of  $\pm$  3% or  $\pm$  1%



KTY 19-6

## General Technical Data: KT- and KTY-Series Temperature Sensors

These temperature sensors are designed for the measurement, control and regulation of air, gases and liquids within the temperature range of  $-50\,^{\circ}\text{C}$  to  $+150\,^{\circ}\text{C}$ . The temperature sensing element is an n-conducting silicon crystal in planar technology. The gentle curvature of the characteristic,  $R_{\text{T}} = f(T_{\text{A}})$ , is described as a regression parabola in the following expressions.

The resistance of the sensor can be calculated for various temperatures from the following second order equation, valid over the temperature range -30 °C to +130 °C.

$$R_{\rm T} = R_{25} \times (1 + \alpha \times \Delta T_{\rm A} + \beta \times \Delta T_{\rm A}^2) = f(T_{\rm A})$$
  
with:  $\alpha = 7.88 \ 10^{-3} \ {\rm K}^{-1}$ ;  $\beta = 1.937 \ 10^{-5} \ {\rm K}^{-2}$ 

## Sensor Resistance $R_T = k_T \times R_{25} = f(T_A)$

$$I_{\rm B}$$
 = 1 mA; Example:  $R_{25}$  = 2000  $\Omega$ 

